Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(4): 1405-1413, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38563132

RESUMO

Endochin-like quinolones (ELQs) define a class of small molecule antimicrobials that target the mitochondrial electron transport chain of various human parasites by inhibiting their cytochrome bc1 complexes. The compounds have shown potent activity against a wide range of protozoan parasites, including the intraerythrocytic parasites Plasmodium and Babesia, the agents of human malaria and babesiosis, respectively. First-generation ELQ compounds were previously found to reduce infection by Babesia microti and Babesia duncani in animal models of human babesiosis but achieved a radical cure only in combination with atovaquone and required further optimization to address pharmacological limitations. Here, we report the identification of two second-generation 3-biaryl ELQ compounds, ELQ-596 and ELQ-650, with potent antibabesial activity in vitro and favorable pharmacological properties. In particular, ELQ-598, a prodrug of ELQ-596, demonstrated high efficacy as an orally administered monotherapy at 10 mg/kg. The compound achieved radical cure in both the chronic model of B. microti-induced babesiosis in immunocompromised mice and the lethal infection model induced by B. duncani in immunocompetent mice. Given its high potency, favorable physicochemical properties, and low toxicity profile, ELQ-596 represents a promising drug for the treatment of human babesiosis.


Assuntos
Babesiose , Quinolonas , Camundongos , Humanos , Animais , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Quinolonas/farmacologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-38661253

RESUMO

Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.

3.
J Immunol ; 212(6): 933-940, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38275935

RESUMO

In response to microbial infection, the nonclassical Ag-presenting molecule MHC class I-related protein 1 (MR1) presents secondary microbial metabolites to mucosal-associated invariant T (MAIT) cells. In this study, we further characterize the repertoire of ligands captured by MR1 produced in Hi5 (Trichoplusia ni) cells from Mycobacterium smegmatis via mass spectrometry. We describe the (to our knowledge) novel MR1 ligand photolumazine (PL)V, a hydroxyindolyl-ribityllumazine with four isomers differing in the positioning of a hydroxyl group. We show that all four isomers are produced by M. smegmatis in culture and that at least three can induce MR1 surface translocation. Furthermore, human MAIT cell clones expressing distinct TCR ß-chains differentially responded to the PLV isomers, demonstrating that the subtle positioning of a single hydroxyl group modulates TCR recognition. This study emphasizes structural microheterogeneity within the MR1 Ag repertoire and the remarkable selectivity of MAIT cell TCRs.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Antígenos de Histocompatibilidade Menor , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
4.
Nat Cell Biol ; 25(6): 877-891, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231163

RESUMO

Although mucosal-associated invariant T (MAIT) cells provide rapid, innate-like responses, they are not pre-set, and memory-like responses have been described for MAIT cells following infections. The importance of metabolism for controlling these responses, however, is unknown. Here, following pulmonary immunization with a Salmonella vaccine strain, mouse MAIT cells expanded as separate CD127-Klrg1+ and CD127+Klrg1- antigen-adapted populations that differed in terms of their transcriptome, function and localization in lung tissue. These populations remained altered from steady state for months as stable, separate MAIT cell lineages with enhanced effector programmes and divergent metabolism. CD127+ MAIT cells engaged in an energetic, mitochondrial metabolic programme, which was critical for their maintenance and IL-17A synthesis. This programme was supported by high fatty acid uptake and mitochondrial oxidation and relied on highly polarized mitochondria and autophagy. After vaccination, CD127+ MAIT cells protected mice against Streptococcus pneumoniae infection. In contrast, Klrg1+ MAIT cells had dormant but ready-to-respond mitochondria and depended instead on Hif1a-driven glycolysis to survive and produce IFN-γ. They responded antigen independently and participated in protection from influenza virus. These metabolic dependencies may enable tuning of memory-like MAIT cell responses for vaccination and immunotherapies.


Assuntos
Células T Invariantes Associadas à Mucosa , Camundongos , Animais , Células T Invariantes Associadas à Mucosa/metabolismo , Pulmão
5.
Sci Rep ; 12(1): 22539, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581641

RESUMO

MR1-restricted T (MR1T) cells recognize microbial small molecule metabolites presented on the MHC Class I-like molecule MR1 and have been implicated in early effector responses to microbial infection. As a result, there is considerable interest in identifying chemical properties of metabolite ligands that permit recognition by MR1T cells, for consideration in therapeutic or vaccine applications. Here, we made chemical modifications to known MR1 ligands to evaluate the effect on MR1T cell activation. Specifically, we modified 6,7-dimethyl-8-D-ribityllumazine (DMRL) to generate 6,7-dimethyl-8-D-ribityldeazalumazine (DZ), and then further derivatized DZ to determine the requirements for retaining MR1 surface stabilization and agonistic properties. Interestingly, the IFN-γ response toward DZ varied widely across a panel of T cell receptor (TCR)-diverse MR1T cell clones; while one clone was agnostic toward the modification, most displayed either an enhancement or depletion of IFN-γ production when compared with its response to DMRL. To gain insight into a putative mechanism behind this phenomenon, we used in silico molecular docking techniques for DMRL and its derivatives and performed molecular dynamics simulations of the complexes. In assessing the dynamics of each ligand in the MR1 pocket, we found that DMRL and DZ exhibit differential dynamics of both the ribityl moiety and the aromatic backbone, which may contribute to ligand recognition. Together, our results support an emerging hypothesis for flexibility in MR1:ligand-MR1T TCR interactions and enable further exploration of the relationship between MR1:ligand structures and MR1T cell recognition for downstream applications targeting MR1T cells.


Assuntos
Células T Invariantes Associadas à Mucosa , Linfócitos T , Ligantes , Antígenos de Histocompatibilidade Classe I/metabolismo , Simulação de Acoplamento Molecular , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Apresentação de Antígeno
6.
Future Med Chem ; 14(22): 1611-1620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36349868

RESUMO

Background: In 1948, the synthesis and Plasmodium lophurae activity of 2-hydroxy-1,4-naphthoquinones containing 3-alkyldiarylether side chains was reported. Method/results: The synthesis of five related compounds, designed to be more metabolically stable, was pursued. The compounds were synthesized using a radical alkylation reaction with naphthoquinones. One compound had a lower IC50 value against various strains of Plasmodium falciparum and assay data indicate that it binds to the Qo site of cytochrome bc1. With a low yield for the radical alkylation of the most active compound, a reductive alkylation method with used to improve reaction yields. Conclusion: Further synthetic knowledge was obtained, and the assay data indicate that there are sensitivity differences between avian and human malarial parasites for these molecules.


Malaria is a disease caused by a parasite that affects millions of people each year and results in many deaths. In 1948, 300 structurally related compounds were made and tested for antimalarial activity with the goal of finding a drug to treat the disease. From this work, promising compounds were identified and this work has served as a starting point for further investigations. Based on recent discoveries, this study made variations of promising 1948 compounds to investigate whether antimalarial activity could be improved. These compounds were made using two different methods. One derivative was found to be more potent than the original compound but was not the one expected based on the 1948 work.


Assuntos
Antimaláricos , Naftoquinonas , Humanos , Plasmodium falciparum , Antimaláricos/química
7.
Expert Opin Drug Discov ; 17(9): 997-1011, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35772172

RESUMO

INTRODUCTION: Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED: This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION: Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.


Assuntos
Antiprotozoários , Citocromos , Toxoplasma , Toxoplasmose , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Citocromos/antagonistas & inibidores , Humanos , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
8.
J Infect Dis ; 226(7): 1267-1275, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35512141

RESUMO

Human babesiosis is a malaria-like illness caused by tick-borne intraerythrocytic Babesia parasites of the Apicomplexa phylum. Whereas several species of Babesia can cause severe disease in humans, the ability to propagate Babesia duncani both in vitro in human erythrocytes and in mice makes it a unique pathogen to study Babesia biology and pathogenesis. Here we report an optimized B. duncani in culture-in mouse (ICIM) model that combines continuous in vitro culture of the parasite with a precise model of lethal infection in mice. We demonstrate that B. duncani-infected erythrocytes as well as free merozoites can cause lethal infection in C3H/HeJ mice. Highly reproducible parasitemia and survival outcomes could be established using specific parasite loads in different mouse genetic backgrounds. Using the ICIM model, we discovered 2 new endochin-like quinolone prodrugs (ELQ-331 and ELQ-468) that alone or in combination with atovaquone are highly efficacious against B. duncani and Babesia microti.


Assuntos
Babesia , Parasitos , Pró-Fármacos , Quinolonas , Carrapatos , Animais , Atovaquona/farmacologia , Babesia/genética , Humanos , Camundongos , Camundongos Endogâmicos C3H , Virulência
9.
ACS Chem Biol ; 17(5): 1073-1081, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35471821

RESUMO

We sought to develop a small-molecule activator of interferon regulatory factor 3 (IRF3), an essential innate immune transcription factor, which could potentially be used therapeutically in multiple disease settings. Using a high-throughput screen, we identified small-molecule entities that activate a type I interferon response, with minimal off-target NFκB activation. We identified 399 compounds at a hit rate of 0.24% from singlicate primary screening. Secondary screening included the primary hits and additional compounds with similar chemical structures obtained from other library sources and resulted in 142 candidate compounds. The hit compounds were sorted and ranked to identify compound groups with activity in both human and mouse backgrounds to facilitate animal model engagement for translational development. Chemical modifications within two groups of small molecules produced leads with improved activity over original hits. Furthermore, these leads demonstrated activity in ex vivo cytokine release assays from human blood- and mouse bone marrow-derived macrophages. Dependence on IRF3 was demonstrated using bone marrow-derived macrophages from IRF3-deficient mice, which were not responsive to the molecules. To identify the upstream pathway leading to IRF3 activation, we used a library of CRISPR knockout cell lines to test the key innate immune adaptor and receptor molecules. These studies indicated a surprising toll-interleukin-1 receptor-domain-containing-adapter-inducing interferon-ß-dependent but TLR3/4-independent mechanism of IRF3 activation.


Assuntos
Fator Regulador 3 de Interferon , Transdução de Sinais , Animais , Antivirais/farmacologia , Desenvolvimento de Medicamentos , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/metabolismo , Camundongos
10.
J Biomol Tech ; 33(4)2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37033097

RESUMO

Shared research resources are essential to academic research. A rapidly evolving workforce within a highly competitive market is making recruitment and retention of knowledgeable and technically skilled core staff more difficult. The inability to recruit and retain staff diminishes the resource's overall ability to provide services, which in turn affects academic research quality. Research institutions need to recognize that the roles and skills of shared research resource staff are distinguishable from those of research staff in funded investigator laboratories, and in doing so, develop a career path for shared research resource staff that will help these facilities recruit, train, and retain them. This brief focuses on the creation of a standardized career track for shared research resource staff: a career path of at least 3 to 5 tiered positions with task outlines that can be tailored to positions needed in any shared research resource. Salaries will vary for individuals within each position classification based on experience, mastered competencies, and time within the shared research resource. Besides characterizing basic task differences between shared research resource staff and other research personnel, the most compelling reason for having a well-delineated career path for shared research resource staff is to establish fairness, equity, and true opportunity in a supportive working environment, where shared research resource staff are motivated by developing a marketable skill set, gaining professional self-confidence, and earning a meaningful salary. Presented here is a case study from Oregon Health & Science University of the creation of a career path for shared research resource staff.


Assuntos
Pesquisadores , Humanos , Oregon
11.
Antimicrob Agents Chemother ; 65(9): e0066221, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152821

RESUMO

An effective strategy to control blood-borne diseases and prevent outbreak recrudescence involves targeting conserved metabolic processes that are essential for pathogen viability. One such target for Plasmodium and Babesia, the infectious agents of malaria and babesiosis, respectively, is the mitochondrial cytochrome bc1 protein complex, which can be inhibited by endochin-like quinolones (ELQ) and atovaquone. We used the tick-transmitted and culturable blood-borne pathogen Babesia duncani to evaluate the structure-activity relationship, safety, efficacy, and mode of action of ELQs. We identified a potent and highly selective ELQ prodrug (ELQ-502), which, alone or in combination with atovaquone, eliminates B. microti and B. duncani infections in vitro and in mouse models of parasitemia and lethal infection. The strong efficacy at low dose, excellent safety, bioavailability, and long half-life of this experimental therapy make it an ideal clinical candidate for the treatment of human infections caused by Babesia and its closely related apicomplexan parasites.


Assuntos
Babesia , Babesiose , Animais , Atovaquona/farmacologia , Babesiose/tratamento farmacológico , Babesiose/prevenção & controle , Citocromos , Camundongos , Parasitemia/tratamento farmacológico
12.
Org Process Res Dev ; 25(8): 1841-1852, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35110959

RESUMO

The Endochin-Like Quinolone (ELQ) compound class may yield effective, safe treatments for a range of important human and animal afflictions. However, to access the public health potential of this compound series, a synthetic route needed to be devised that lowers costs and is amenable to large scale production. In the new synthetic route described here, a substituted ß-keto ester, formed by an Ullmann reaction and subsequent acylation, is reacted with an aniline via a Conrad-Limpach reaction to produce 3-substituted 4(1H)-quinolones such as ELQ-300 and ELQ-316. This synthetic route, the first described to be truly amenable to industrial scale production, is relatively short (5 reaction steps), does not require palladium, chromatographic separation or protecting group chemistry, and may be performed without high vacuum distillation.

13.
Parasit Vectors ; 13(1): 606, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272316

RESUMO

BACKGROUND: The most common apicomplexan parasites causing bovine babesiosis are Babesia bovis and B. bigemina, while B. caballi and Theileria equi are responsible for equine piroplasmosis. Treatment and control of these diseases are usually achieved using potentially toxic chemotherapeutics, such as imidocarb diproprionate, but drug-resistant parasites are emerging, and alternative effective and safer drugs are needed. The endochin-like quinolones (ELQ)-300 and ELQ-316 have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp., with ELQ-316 also being effective against Babesia microti, without showing toxicity in mammals. METHODS: The inhibitory effects of ELQ-300 and ELQ-316 were assessed on the growth of cultured B. bovis, B. bigemina, B. caballi and T. equi. The percentage of parasitized erythrocytes was measured by flow cytometry, and the effect of the ELQ compounds on the viability of horse and bovine peripheral blood mononuclear cells (PBMC) was assessed by monitoring cell metabolic activity using a colorimetric assay. RESULTS: We calculated the half maximal inhibitory concentration (IC50) at 72 h, which ranged from 0.04 to 0.37 nM for ELQ-300, and from 0.002 to 0.1 nM for ELQ-316 among all cultured parasites tested at 72 h. None of the parasites tested were able to replicate in cultures in the presence of ELQ-300 and ELQ-316 at the maximal inhibitory concentration (IC100), which ranged from 1.3 to 5.7 nM for ELQ-300 and from 1.0 to 6.0 nM for ELQ-316 at 72 h. Neither ELQ-300 nor ELQ-316 altered the viability of equine and bovine PBMC at their IC100 in in vitro testing. CONCLUSIONS: The compounds ELQ-300 and ELQ-316 showed significant inhibitory activity on the main parasites responsible for bovine babesiosis and equine piroplasmosis at doses that are tolerable to host cells. These ELQ drugs may be viable candidates for developing alternative protocols for the treatment of bovine babesiosis and equine piroplasmosis.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Babesiose/parasitologia , Doenças dos Cavalos/parasitologia , Quinolonas/farmacologia , Theileria/efeitos dos fármacos , Theileriose/parasitologia , Animais , Babesia/crescimento & desenvolvimento , Babesia/fisiologia , Babesiose/tratamento farmacológico , Eritrócitos/parasitologia , Doenças dos Cavalos/tratamento farmacológico , Cavalos , Leucócitos Mononucleares/parasitologia , Theileria/crescimento & desenvolvimento , Theileria/fisiologia , Theileriose/tratamento farmacológico
14.
Biochem Pharmacol ; 182: 114293, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091380

RESUMO

Substituted fentanyls are abused and cause rapid fatal overdose. As their pharmacology is not well characterized, we examined in vitro pharmacology and structure-activity relationships of 22 substituted fentanyls with modifications of the fentanyl propyl group, and conducted in silico receptor/ligand modeling. Affinities for mu, kappa, and delta opioid receptors (MOR, KOR, and DOR, respectively) heterologously expressed in mammalian cells were assessed in agonist radioligand binding assays. At MOR, furanyl fentanyl had higher affinity than fentanyl, while acryl, isobutyryl and cyclopropyl fentanyls had similar affinities. Comparing affinities, thiophene and methoxyacetyl fentanyls had highest selectivity for MOR (2520- and 2730-fold compared to KOR and DOR, respectively). Functional activities were assessed using [35S]GTPγS binding assays. At MOR, furanyl fentanyl had higher potency and 11 substituted fentanyls had similar high potencies compared to fentanyl. Eight compounds were full agonists of MOR and twelve compounds were partial agonists, with efficacies from 8.8% (phenyl fentanyl) to 60.2% (butyryl fentanyl). All efficacious compounds had selective functional potency for MOR. The predicted binding poses of flexible fentanyl and rigid morphine against MOR show partially overlapping binding pockets, with fentanyl maintaining additional interaction with the transmembrane (TM) 2 helix. Subsequent molecular dynamics simulations revealed a predominant fentanyl binding pose involving various TM interactions. The piperidine nitrogen of substituted fentanyls establishes a salt-bridge with the conserved D-1473.32 residue and the propanamide carbonyl group establishes a hydrogen bond with the indole side-chain (-NH) of W-3187.35. The simulation suggests theN-linked phenethyl group may regulate the rotameric switch of W-2936.48. The predicted binding pose, in conjunction with in vitro binding affinity, clarified the molecular basis of the binding/selectivity profile of furanyl fentanyl and other derivatives at the sequence level. In summary, substituted fentanyls with high MOR potencies, selectivities, and efficacies are likely to have abuse and overdose potential. The work presented here is a prototype to investigate fentanyl derivatives and their abuse potential.


Assuntos
Analgésicos Opioides/metabolismo , Fentanila/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Receptores Opioides kappa/metabolismo , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Fentanila/análogos & derivados , Fentanila/química , Fentanila/farmacologia , Furanos/química , Furanos/metabolismo , Furanos/farmacologia , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/química , Relação Estrutura-Atividade , Resultado do Tratamento
15.
Front Immunol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733475

RESUMO

The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas de Membrana/agonistas , Alelos , Animais , Descoberta de Drogas , Humanos , Imunidade Inata/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos
16.
Artigo em Inglês | MEDLINE | ID: mdl-32540978

RESUMO

Toxoplasmosis is a potentially fatal infection for immunocompromised people and the developing fetus. Current medicines for toxoplasmosis have high rates of adverse effects that interfere with therapeutic and prophylactic regimens. Endochin-like quinolones (ELQs) are potent inhibitors of Toxoplasma gondii proliferation in vitro and in animal models of acute and latent infection. ELQ-316, in particular, was found to be effective orally against acute toxoplasmosis in mice and highly selective for T. gondii cytochrome b over human cytochrome b Despite its oral efficacy, the high crystallinity of ELQ-316 limits oral absorption, plasma concentrations, and therapeutic potential. A carbonate ester prodrug of ELQ-316, ELQ-334, was created to decrease crystallinity and increase oral bioavailability, which resulted in a 6-fold increase in both the maximum plasma concentration (Cmax) and the area under the curve (AUC) of ELQ-316. The increased bioavailability of ELQ-316, when administered as ELQ-334, resulted in efficacy against acute toxoplasmosis greater than that of an equivalent dose of ELQ-316 and had efficacy against latent toxoplasmosis similar to that of ELQ-316 administered intraperitoneally. Treatment with carbonate ester prodrugs is a successful strategy to overcome the limited oral bioavailability of ELQs for the treatment of toxoplasmosis.


Assuntos
Pró-Fármacos , Quinolonas , Toxoplasma , Toxoplasmose Animal , Animais , Encéfalo/parasitologia , Carbonatos , Ésteres , Camundongos , Toxoplasmose Animal/tratamento farmacológico
17.
Front Vet Sci ; 7: 96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161765

RESUMO

Endochin-like quinolones (ELQs) potently inhibit the proliferation of Plasmodium, Toxoplasma, Neospora, and Babesia by targeting the cytochrome b Qo and Qi sites and interfering with oxidative phosphorylation and pyrimidine biosynthesis. The activities of 14 different ELQs were assessed against B. besnoiti tachyzoites grown in human foreskin fibroblasts (HFF) by quantitative real time PCR. The values for 50% proliferation inhibition (IC50) of five ELQs were determined in a 3-days growth assay after an initial screen of 12 ELQs at 0.01, 0.1, and 1 µM. The IC50s of ELQ-121, -136, and -316 were 0.49, 2.36, and 7.97 nM, respectively. The IC50s of ELQs tested against B. besnoiti were higher than IC50s previously observed for P. falciparum and T. gondii. However, the B. besnoiti cytochrome b sequence and the predicted Qo and Qi ELQ binding sites in the Toxoplasma, Neospora, and Besnoitia cytochrome b are virtually identical, suggesting that the differences in ELQ susceptibility are not due to variations in the substrate binding sites. TEM of ELQ-treated parasites primarily demonstrated alterations within the parasite mitochondrion, profound thickening of the nuclear membrane, as well as increased vacuolization within the tachyzoite cytoplasm. Long-term treatment assays of intracellular B. besnoiti with ELQs for up to 20 days followed by the release of drug pressure caused a substantial delay in parasite growth and proliferation while ELQs were present, but parasite proliferation resumed days after ELQs were removed. Interestingly, structural alterations persisted after ELQ removal and parasite proliferation was slowed. These findings provide a basis for further in vivo studies of ELQs as therapeutic options against B. besnoiti infection.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32094134

RESUMO

Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver- and blood-stage parasites, making these drugs useful as both prophylaxis and treatment. Recently, several derivatives of endochin have been optimized to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and Plasmodium vivax, their activity against the zoonotic agent Plasmodium knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesiin vitro and compared this with their activity against P. falciparum tested under identical conditions. We demonstrated that ELQs are potent against P. knowlesi (50% effective concentration, <117 nM) and equally effective against P. falciparum We then screened selected quinolones and partner drugs using a longer exposure (2.5 life cycles) and found that proguanil is 10-fold less potent against P. knowlesi than P. falciparum, while the quinolones demonstrate similar potency. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, the combination of the novel quinolone ELQ-300 with atovaquone was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and in the interaction of proguanil with quinolones and support the ongoing development of novel quinolones as potent antimalarials that target multiple species.


Assuntos
Antimaláricos/farmacologia , Plasmodium knowlesi/efeitos dos fármacos , Proguanil/farmacologia , Quinolonas/farmacologia , Animais , Atovaquona/farmacologia , Interações Medicamentosas , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/crescimento & desenvolvimento
19.
Pharm Dev Technol ; 25(5): 625-639, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32031478

RESUMO

To improve the solubility and oral bioavailability of a novel antimalarial agent ELQ-331(a prodrug of ELQ-300), spray-dried dispersions (SDD) and a self-emulsifying drug delivery system (SEDDS) were developed. SDD were prepared with polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) polymer carrier and Aeroperl® 300 Pharma and characterized by differential scanning calorimetry, powder X-ray diffraction. For SEDDS, solubility in oils, surfactants, and co-surfactants was determined and ternary phase diagram was constructed to show self-emulsifying area. SEDDS were characterized for spontaneous emulsification and droplet size distribution. The amorphous ELQ-331 SDD improved the solubility to 10× in fast-state simulated intestinal fluid and addition of sodium lauryl sulphate externally to SDDs further improved the solubility to ∼28.5× versus non-formulated drug. SEDDS had good self-emulsifying characteristics with small emulsion droplet sizes and narrow particle distribution. Oral pharmacokinetic studies for SDD and SEDDS formulations were performed in rats. The ELQ-331 rapidly converted to ELQ-300 soon after oral administration in rats. Exposure levels of ELQ-300 were about 1.4-fold higher (based on AUC) in SEDDS than SDD formulations. Poorly soluble drugs like ELQ-331 can be formulated using SDD or SEDDS to improve solubility and oral bioavailability.


Assuntos
Antimaláricos/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Pró-Fármacos/química , Quinolonas/química , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/sangue , Disponibilidade Biológica , Estabilidade de Medicamentos , Emulsões , Excipientes/química , Masculino , Estrutura Molecular , Polietilenoglicóis/química , Polivinil/química , Pró-Fármacos/administração & dosagem , Quinolonas/administração & dosagem , Quinolonas/sangue , Ratos Sprague-Dawley , Solubilidade
20.
EMBO Mol Med ; 11(12): e10489, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31660701

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.


Assuntos
Coenzima A/metabolismo , Dopamina/metabolismo , Ferro/metabolismo , Panteteína/análogos & derivados , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Animais , Biomarcadores/metabolismo , Genótipo , Camundongos , Panteteína/farmacologia , Panteteína/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...